The Cellular DExD/H-Box RNA-Helicases UAP56 and URH49 Exhibit a CRM1-Independent Nucleocytoplasmic Shuttling Activity

نویسندگان

  • Marco Thomas
  • Peter Lischka
  • Regina Müller
  • Thomas Stamminger
چکیده

Cellular DExD/H-box RNA-helicases perform essential functions during mRNA biogenesis. The closely related human proteins UAP56 and URH49 are members of this protein family and play an essential role for cellular mRNA export by recruiting the adaptor protein REF to spliced and unspliced mRNAs. In order to gain insight into their mode of action, we aimed to characterize these RNA-helicases in more detail. Here, we demonstrate that UAP56 and URH49 exhibit an intrinsic CRM1-independent nucleocytoplasmic shuttling activity. Extensive mapping studies identified distinct regions within UAP56 or URH49 required for (i) intranuclear localization (UAP56 aa81-381) and (ii) interaction with REF (UAP56 aa51-428). Moreover, the region conferring nucleocytoplasmic shuttling activity was mapped to the C-terminus of UAP56, comprising the amino acids 195-428. Interestingly, this region coincides with a domain within Uap56p of S. pombe that has been reported to be required for both Rae1p-interaction and nucleocytoplasmic shuttling. However, in contrast to this finding we report that human UAP56 shuttles independently from Rae1. In summary, our results reveal nucleocytoplasmic shuttling as a conserved feature of yeast and human UAP56, while their export receptor seems to have diverged during evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interferon-induced antiviral protein MxA interacts with the cellular RNA helicases UAP56 and URH49.

Mx proteins are a family of large GTPases that are induced exclusively by interferon-α/β and have a broad antiviral activity against several viruses, including influenza A virus (IAV). Although the antiviral activities of mouse Mx1 and human MxA have been studied extensively, the molecular mechanism of action remains largely unsolved. Because no direct interaction between Mx proteins and IAV pr...

متن کامل

Characterization of the betaherpesviral pUL69 protein family reveals binding of the cellular mRNA export factor UAP56 as a prerequisite for stimulation of nuclear mRNA export and for efficient viral replication.

UL69 of human cytomegalovirus (HCMV) encodes a pleiotropic transactivator protein and has a counterpart in every member of the Herpesviridae family thus far sequenced. However, little is known about the conservation of the functions of the nuclear phosphoprotein pUL69 in the homologous proteins of other betaherpesviruses. Therefore, eukaryotic expression vectors were constructed for pC69 of chi...

متن کامل

RNA-binding of the human cytomegalovirus transactivator protein UL69, mediated by arginine-rich motifs, is not required for nuclear export of unspliced RNA

The human cytomegalovirus protein pUL69 belongs to a family of regulatory factors that is conserved within the Herpesviridae and includes the proteins ICP27 of herpes simplex virus type 1 and EB2 of Epstein-Barr virus. ICP27 and EB2 have been shown to facilitate the nuclear export of viral mRNAs via interacting with the cellular mRNA export factor REF. Furthermore, direct RNA-binding of these p...

متن کامل

Growth-regulated expression and G0-specific turnover of the mRNA that encodes URH49, a mammalian DExH/D box protein that is highly related to the mRNA export protein UAP56.

URH49 is a mammalian protein that is 90% identical to the DExH/D box protein UAP56, an RNA helicase that is important for splicing and nuclear export of mRNA. Although Saccharomyces cerevisiae and Drosophila express only a single protein corresponding to UAP56, mRNAs encoding URH49 and UAP56 are both expressed in human and mouse cells. Both proteins interact with the mRNA export factor Aly and ...

متن کامل

The Closely Related RNA helicases, UAP56 and URH49, Preferentially Form Distinct mRNA Export Machineries and Coordinately Regulate Mitotic Progression

Nuclear export of mRNA is an essential process for eukaryotic gene expression. The TREX complex couples gene expression from transcription and splicing to mRNA export. Sub2, a core component of the TREX complex in yeast, has diversified in humans to two closely related RNA helicases, UAP56 and URH49. Here, we show that URH49 forms a novel URH49-CIP29 complex, termed the AREX (alternative mRNA e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011